
22 CROSSTALK The Journal of Defense Software Engineering March 1999

Any information technology
(IT) system needs its computing
 resources to operate correctly

(system integrity) and should maintain
the value of its information (data integ-
rity). Unfortunately, adverse events may
damage data integrity or system integ-
rity or both.

Contingency planning for IT sys-
tems focuses on preserving, enabling
recovery, or the graceful degradation of
system or data integrity. Unfortunately,
contingency mechanisms that work in
one adverse situation may be hopelessly
inadequate in another. Consequently,
different contingency plan types exist
for different “disasters.” The two pri-
mary types are physical and logical
event plans.

Traditional IT contingency plans
address physical events such as flood,
fire, earthquake, war, or loss of power.
Many sources discuss traditional con-
tingency planning, which often empha-
sizes replication and physical separation
to guard against physical disasters. Such
traditional planning does not consider
logical events.

A logical event (LE) strikes all sites
that have similar information configura-
tions (software, data, and firmware)—no
matter how widely separated. The im-
pacted system also may corrupt IT that
is down the information flow stream. LE
contingency planning has two subcat-
egories: plans for incompletely under-
stood systems and plans for well-under-
stood systems. Because the Y2K problem
is an LE, discussion of LE contingency
planning is appropriate.

LE contingency planning borrows
from systems security principles, which
include auditing, system modeling,
input and output validation, and in-

strumentation. This article outlines the
properties that a contingency plan
strives to preserve, suggests techniques
for further investigation in Y2K LE
contingency planning, and explains LE
contingency plans with respect to tradi-
tional plans.

Y2K planning is about risk manage-
ment. Risk management involves
• Identifying risks (potential threats

and vulnerabilities).
• Analyzing risks by evaluating, cat-

egorizing, and prioritizing them.
• Planning for risks.

Contingency planning reduces to
• Creating mechanisms to identify the

events that trigger contingency
actions.

• Defining what the contingency
actions are (either automatic or
manually executed actions).

• Preparing the responsible parties by
documenting who they are and by
training them to be ready.

Weak Contingency Planning
An occasional protest to LE contin-
gency planning is to offer a weak (or
no) contingency plan followed with,
“What more can be done? I can’t plan
for every possibility!” For example, a
weak plan might call for canceling
vacations and putting support person-
nel on call. This is merely a beginning
that, unfortunately, does not take ad-
vantage of all available information.

Procedures to deal with a disruption
should address the event’s most probable
serious consequences. Scale the plan to
fit the consequences. For instance, if you
run out of paper when printing E-mail,
you acquire more paper—you do not
buy a paper mill. However, if you run
the U.S. Mint and you frequently run

out of paper for money, perhaps you
should buy a paper mill (or mint more
coins). Planning for every event is im-
possible and counterproductive. It is
prudent to analyze the adverse events
that could occur (for example, Y2K
problems) and construct mechanisms to
preserve, enable recovery, or gracefully
degrade system or data integrity.

Contingency Plans and
Integrity
An IT system should be reliable, correct,
and accurate. These integrity principles
divide into two categories: data and
system integrity. Data and system integ-
rity include accuracy, completeness,
consistency, timeliness, authenticity,
authorization, precision, compliance
with laws, regulations, organization
policies, and procedures, and evidence
that all of the proceeding properties are
fulfilled [4]. IT that loses system or data
integrity is worse than useless—it may
be misleading and even dangerous. In-
tegrity principles are fundamental re-
quirements to reliable IT operation.

Contingency plans state how to
manage the planned degradation, pres-
ervation, or restoration of system and
data integrity. Not all adverse events
impact all integrity principles. To create
a contingency plan for a particular
system, one addresses that system’s
requirements with respect to a catastro-
phe by documenting how to handle the
integrity of specific requirements.

Physical Event Contingency
Plans
Traditional contingency planning,
whether from a computer-age view-
point or not, assumes that problems are
physical in nature. Adverse events take

Logical Event Contingency Planning for Y2K
Robert L. Moore and Roberta H. Krupit

Coastal Research and Technology, Inc.

Traditional contingency planning methods do not work well for logical events, such as year 2000
(Y2K) problems. And although there are many different types of logical event contingency plans, those
that work well for some situations may be of no use for others. This article discusses the unique aspects
of logical event contingency plans and helps you plan appropriate strategies to deal with logical events.

CROSSTALK The Journal of Defense Software Engineering 23March 1999

the form of flood, fire, earthquake, war,
terrorism, riot, hurricane, tornado,
sabotage, loss of electricity, equipment
failure, flu epidemic, and so on.

The distinguishing feature of physi-
cal problems is distance. A gas station
explosion might impact business opera-
tions at a restaurant half a block away
but will not impact operations at an-
other gas station 100 miles away. Physi-
cal “disasters” have less direct impact as
distance from the disaster increases.

Traditional contingency plans use
the localization of physical disasters by
emphasizing IT duplication in physi-
cally protected or remote locations.
There is more to contingency planning
than creating backups, of course. Other
parts of physical event contingency
planning include educating staff in
contingency procedures, ensuring ad-
equate management and security con-
trols for operation during an event, cost
analysis of recovery options, and
mechanisms to rapidly transfer control
to alternate sites. In any case, the ulti-
mate safeguard in a physical event con-
tingency plan is a remote operations
center (ROC) that faithfully duplicates
the capabilities of the primary opera-
tions center [7].

Fortunately, disaster planning litera-
ture covers the creation of an ROC.
Consequently, even though the design,
creation, and operation of an ROC are
not easy, they are sufficiently docu-
mented that we need not revisit them
here except in contrast to LE plans.

Logical Event Contingency
Plans
The logical and physical worlds are
fundamentally different, as are logical
and physical events. A logical event, such
as a bug in command and control (C2)
software that shuts down pumping op-
erations at a gas station based on a quar-
terly pump maintenance query, will not
impact a neighboring restaurant but may
impact every gas station with the same
C2 software. Indeed, LEs may corrupt
otherwise operational systems down the
information stream from the impacted
system. A plan to address physical events
is unlikely to help with an LE (and vice
versa).

Adverse logical events are the com-
bination of threats and vulnerabilities, a
combination that is possible due to
bugs at some level (requirements, de-
sign, or implementation). Logical
events can follow failure to anticipate
possible data forms, hazards that could
attack a system (like vulnerability to a
virus), unintended intercomponent
interactions, or design assumptions that
eventually destabilize the system (Y2K).

Computer security events are typi-
cally LEs. Computer security events
provide clear examples of logical “disas-
ters” (such as viruses and Internet
worms). Methods to mitigate security
events are similar to methods for logical
events in general and Y2K events in
particular.

IT security focuses on preserving a
system and its information content
against malicious attempts to make data
and resources unavailable, unreliable,
inaccurate, or inefficient. IT security
begins by trying to avoid events and
concludes by building mechanisms to
deal with events should they happen

anyway. System development tries to
avoid LE problems but uses contin-
gency plans to address expected or
unexpected potential threats. An LE
contingency plan focuses on preserving
a system and its information content
against events that make data and re-
sources unavailable, unreliable, inaccu-
rate, or inefficient.

The comparison of the Y2K LE
with a virus is indeed appropriate. Y2K
consequences, although not malicious,
degrade IT much like viruses.

How an LE impacts IT depends on
the “distance” between the various
components. Coupling, cohesion, and
similarity of function and form deter-
mine distance. As understanding of a
system increases, logical contingency
plans grow from generic catch-all to
specific plans. This understanding
provides a means to develop more
detailed solutions, such as
“checksums” and logging mechanisms
on automated actions and rapid de-
bugging measures [4, 6].

Creating “checksums” from inputs and
outputs depends on determining what valid
inputs and outputs could be:

1. Using documentation, test cases and
results, maintainer and user system knowl-
edge, and accumulated live inputs and outputs
surmise a set of acceptable inputs and out-
puts. This is a blueprint for what will and will
not be allowed as inputs and outputs. This
method is essentially anecdotal. However, it is
also extremely practical in its simplicity (no
special techniques or tools needed) and in its
efficiency (the data is readily available). Take
care that knowledge of historical inputs and
outputs does not unintentionally exclude
legitimate future input or output variations.

2. Calculate the weakest precondition
(wp) or strongest post-condition (sp) to derive
a set of conditions that must hold true either
before or after execution, for the routine to
function correctly. wp(S,R) is “the set of all
states such that execution of [routine] S

begun in any one of them is guaranteed to
terminate in a finite amount of time in a state
satisfying [expected result] R” [3]. Similarly,
sp(S,I) represents that if [input condition] I is
true, execution of S results in sp(S,I) true if S
terminates [2].

Both wp and sp are obscure and have
minimal automated support. However, they can
be calculated almost completely mechanically.
wp and sp are easiest to derive when good
software engineering practices have gone into a
routine (for instance, cyclomatic complexity is
low, nesting is low, the routine is not too large,
and the code is structured). Calculating wp and
sp also requires more mathematical ingenuity
when dealing with loops. The most practical
method to determine wp or sp is to perform the
calculations in sections with good software
engineering or non-loop structures and to
heuristically estimate what should be true in the
spirit of wp and sp in the harder sections (see
sidebar “Calculating Weakest Precondition for a
Simple C Routine” on next page).

Calculating Inputs from Valid Outputs or
Outputs from Valid Inputs

Logical Event Contingency Planning for Y2K

24 CROSSTALK The Journal of Defense Software Engineering March 1999

Y2K LE Contingency Planning
Most Y2K contingency planning is LE contingency planning.
Writing a Y2K contingency plan depends on how much is
known about a system. Y2K triage determines how much is
known and divides Y2K-impacted systems into two categories:

Category 1 – Critical and noncritical systems that because
of fiscal, technical, or time constraints or mission-related
decisions will not be worked on with respect to Y2K.
Category 2 – Critical systems that will be examined,1

possibly fixed, and tested and for which adequate re-
sources exist to accomplish these tasks.
Category 1 systems need plans that address Y2K conse-

quences at a macroscopic level (generic plans). Conversely,
contingency plans for Category 2 systems are based on infor-
mation derived from analyzing and possibly repairing the
systems (specific plans).

Specific LE Contingency Plans
Compared to systems in Category 1, much is known about
Category 2 systems. Information on what a Category 2 sys-
tem does, how it does it, which sections of the code deliver
what functions, etc., is usually available. This information is
the basis of all subsequent contingency planning. It helps
answer both technical (how do I guard against event X?) and
management (which functions are important to me?) ques-
tions. (Generic LE contingency planning techniques, which

are discussed later, may also apply to a system eligible for a
specific plan, but not vice versa.) Specific plans feature an
array of techniques2,3 including input and output validation,
auditing, and code instrumentation [4, 6]. An LE contin-
gency plan’s goals include the following:
• Detect problems quickly.
• Determine a specific cause for the problem.
• Determine a repair or, if no feasible repair exists, reduce

or prevent further impact from the problem.
• Recover information about damage from the problem so

that anything lost can be restored.
• Demonstrate due diligence in anticipating, avoiding, and

mitigating problems.
The following subsections outline ideas for specific plans.

Input and Output Validation
Recovery time and cost are cut when problems are noticed
quickly. One way to notice problems is to automatically
validate inputs and outputs [4]. An understanding of inputs,
outputs, and their interrelationship requires insight into both
the data form and function4 (see sidebar below). To use input
and output validation as a Y2K defense
• Determine valid outputs or inputs or both, usually at a

subroutine level. (Determining outputs is often easiest.)
• Given known, valid outputs, calculate valid inputs (or

conversely, valid outputs from inputs (see sidebar below,

Calculating Weakest Precondition for a Simple C Routine
The following example shows how to calculate
wp(S,R). (wp is discussed in the sidebar
“Calculating Inputs from Valid Outputs or Outputs
from Valid Inputs” on previous page). In this
example, S is the program to be executed. R is a
statement containing as much information as
possible about what is hoped will be true after S
executes. In this example, wp(S,R) is used to detect
conditions that would cause R to not be true after S
executes—that is, error conditions. Once wp(S,R) is
calculated, it can be used as a built-in data check
to see if errors will occur. Any data inputs that
falsify wp(S,R) will cause the routine represented
by “S” to produce unexpected results.

One way to use wp(S,R) is to place S in the
context of a statement such as “if wp(S,R) then do
S else report error.” The following example
demonstrates working out the full wp(S,R)
calculation. Doing the full calculation for most
programs is too tedious. Usually, contingency error-
trap conditions are derived through a combination
of formal wp calculations in easy code segments
and heuristic estimates of what the calculations
should look like in more difficult code segments.
(See http://www.coastalresearch.com/
for definitions and more examples of both the
formal and the heuristic techniques.)

� return maintenance;
}”

For a more detailed explanation of the
mathematics that follow, see http://
www.coastalresearch.com/. Note that
“∨” means “OR” or “union,” “∧” means “AND”

or “intersection,” “⇒” represents “implies,” “F”
is false, and “T” is true. The calculation uses the
fact that if the symbol “a” may be expressed as
the sequence of symbols “b;c”, then wp(a,R) =
wp(b;c,R) = wp(b,wp(c,R)).

R = “currentyear ≤ maintenancedue =

max(currentyear,lastservice+5) ≤
currentyear+5,” because the “business rules”
(known to the source code maintainers or users)
say that maintenance occurs every five years at
the maximum. The rules also say how the current
year and the maintenance year are related.
wp(S,R) = wp(�;�;�,R) =

wp(�;�,wp(�,R)) =

wp(�;�,wp(maintenancedue = maintenance,

currentyear ≤ maintenancedue =

max(currentyear,lastservice+5) ≤
currentyear+5)) = wp(�;�, currentyear ≤

In this example, the programmer interpreted the
statement “the C compiler made by company X is
Y2K compliant” to mean that any software compiled
using that compiler would be compliant. The derived
wp(S,R), if checked before the routine S executes,
provides an error detector to guard against the
programmer’s misinterpretation.
Let S =
“ #include <stdio.h>

#include <time.h>
#include <stdlib.h>

int maintenancedue (int lastservice)
{
 int maintenance, servicedue, currentyear
 long currentdate;
 struct tm *t;

 time(¤tdate);
 t = localtime(¤tdate);
 currentyear = (int) t->tm_year;

� servicedue = 5 + lastservice;

� if (currentyear >= servicedue)

� maintenance = currentyear;
 else

� maintenance = servicedue;

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 25March 1999

“Calculating Weakest Precondition for a Simple C Rou-
tine”).

• Add source code to beginning or end of each subroutine
(or whatever level valid input and output sets were deter-
mined) to check incoming (or outgoing) data to verify
that it is “within range.” If the input (or output) data is
out of range, take whatever action needed, e.g., issue
warning messages, write an error log, or halt execution.
Input/output validation is a good practice that may even

provide a defense against the most pernicious Y2K error—
unrecognized data corruption just short of system failure.

Event and Data Auditing
Audit information records when and how events occur—
critical information in planning and executing recovery.
Event auditing logs the actions and logs calls by routines,
calls to routines, the order in which calculations take place,
etc., to localize a problem’s cause. Data auditing records the
transactions against each data item. This traces where data
corruption exists, how far it has spread, and perhaps what
might be done to correct it. Together, event and data auditing
diagnose a system by identifying an LE’s cause and effect [6].
A specific contingency plan explains how to collect the infor-
mation and what to do with it.

Using Debuggers and Source Code Instrumentation
to Build “Audit” Trails
Running an “instrumented” or “debug” version of a system
accumulates audit-like information to find and diagnose errors
after they have occurred. Although collecting information by
using test or debug tools is not traditional auditing, these tools
are practical because standard audit trails are often not detailed
enough. For instance, test instrumentation tools add code to
an application that records every execution branch choice and
perhaps even value settings. (Some debuggers have a trace
mode that provides equivalent information.) Likewise, debug-
ging tools allow “break points” to be set in software. Program
execution is suspended when a break point is encountered,
allowing queries on variable values. Some debuggers permit
interaction; other debuggers and all instrumentation tools
provide only post-execution information.

Presuming there will be no bugs from debug or instrumen-
tation interaction with the source code at compile time, you
can use the following procedure of instrumented and debug
source code versions to track down and diagnose Y2K events
• Create an instrumented version of the application. Create

a debug version of the application.
• Retain a non-debug, noninstrumented version of the

application for execution during all periods when Y2K
events are unlikely. (Debugging and instrumentation data
generation may slow the application.)

maintenance = max(currentyear, lastservice+5)
≤ currentyear+5) = wp(�, wp(�,

currentyear ≤ maintenance = max(currentyear,

lastservice+5) ≤ currentyear+5))

However, wp(�, currentyear ≤ maintenance =

max(currentyear, lastservice+5) ≤
currentyear+5) = [(currentyear ≥ servicedue) ∨
(currentyear < servicedue)] ∧ [(currentyear ≥
servicedue) ⇒ wp(maintenance = currentyear,

currentyear ≤ maintenance = max(currentyear,

lastservice+5) ≤ currentyear+5)] ∧
[(currentyear < servicedue) ⇒ wp(maintenance

= servicedue, currentyear ≤ maintenance =

max(currentyear, lastservice+5) ≤
currentyear+5)] = [T] ∧ [(currentyear ≥
servicedue) ⇒ (currentyear ≤ currentyear =

max(currentyear, lastservice+5) ≤
currentyear+5)] ∧ [(currentyear < servicedue)

⇒ (currentyear ≤ servicedue =

max(currentyear, lastservice+5) ≤
currentyear+5)] = [(currentyear ≥ servicedue)
⇒ (currentyear ≤ currentyear =

max(currentyear, lastservice+5) ≤
currentyear+5)] ∧ [(currentyear < servicedue)

To see how this works in practice, suppose
that it is now the new millennium. Let the current
year be 2001, represented as currentyear=101 in
the source code (check the C definitions).
Supposing the last maintenance was in 1995,
represented as lastservice = 1995, S might be
supplied by a database to the routine S. Executing
S should return that the maintenance is due now,
in 2001. Instead, the routine returns 2000.

A follow-on routine that flags equipment for
maintenance by checking to see if the
maintenance due date is equal to the current year
would return false—and continue to return false
forever. To a casual reader (or to a hurried Y2K
analyst under pressure to get the job done), the
code looks fine. But if the result of the wp(S,R)
calculation is checked, it will be found to be false.
Using the wp(S,R) as a “guard” before executing
S would prevent this error.

As a practical matter in this example, an
experienced C programmer could have found the
error with less work than calculating wp(S,R). In
more complicated routines, or where someone
with enough time and experience to read the
code is unavailable, calculating wp(S,R) using a
combination of formal and heuristic techniques
holds the advantage.

⇒ (currentyear ≤ servicedue = max(currentyear,

lastservice+5)≤currentyear+5)]=R’

wp(�, R’) = wp(servicedue = 5 + lastservice,

[(currentyear ≥ servicedue) ⇒ (currentyear ≤
currentyear = max(currentyear, lastservice+5) ≤
currentyear+5)] ∧ [(currentyear < servicedue) ⇒
(currentyear ≤ servicedue = max(currentyear,

lastservice+5) ≤ currentyear+5)]) = [(currentyear

≥ 5 + lastservice) ⇒ (currentyear ≤ currentyear

= max(currentyear, lastservice+5) ≤
currentyear+5)] ∧ [(currentyear < 5 + lastservice)

⇒ (currentyear ≤ 5 + lastservice =

max(currentyear, lastservice+5) ≤ currentyear+5)]
If S executes only when “[(currentyear ≥ 5 +

lastservice) ⇒ (currentyear ≤ currentyear =

max(currentyear, lastservice+5) ≤ currentyear+5)]

∧ [(currentyear < 5 + lastservice) ⇒ (currentyear

≤ 5 + lastservice = max(currentyear, lastservice+5)

≤ currentyear+5)]” (the result of the wp(S,R)
calculation above) is true, R will be satisfied. (To
calculate the truth or falseness of this quantity, note
that for two symbols “a” and “b,” “a ⇒ b” is false
only if “a” is true and “b” is false.) Inputs that falsify
the result of the calculation are error conditions and
should be guarded against.

Logical Event Contingency Planning for Y2K

26 CROSSTALK The Journal of Defense Software Engineering March 1999

• On any date or time when a Y2K
event is likely, use the instrumented
version of the application in place of
the standard version. If a Y2K error
appears, use the “audit” information
from the instrumented version to
identify the instruction sequence that
occurred during the erroneous run.

• Use the debug application version to
investigate the erroneous execution
sequence found with the instru-
mented application.
Specific tools are not necessary to

gather audit-like information. Anyone
who can write and compile code can
add debug and trace statements. Tools
merely make life easier. In any case,
audit information is valuable in follow-
ing an event’s cause and effect.

Audit Through Application Models
Some Y2K assessment and repair tools
construct comprehensive source code
models through reverse engineering
techniques. During assessment, they
help the programmer locate potential
Y2K problems and may even provide
insight to fix problems. To audit using
these models simply means that if a
Y2K event occurs, the model, rather
than being used just as an error predic-
tor, can help diagnose the problem. The
model constitutes a “holistic” audit in
its ability to localize problems given the
real-life information about what hap-
pens when an error occurs.

Presuming that an up-to-date model
of the source code and its interactions
and dependencies can be maintained, a
model can be used to rapidly diagnose
errors as follows:
• Use a reverse engineering (see sidebar

“Reverse Engineering”) tool to
model the application, beginning
with the implementation level and
working toward a design-level un-
derstanding. Identify all real and
suspected date data usage. (Deriving
this information is essentially what
goes on during a sophisticated Y2K
bug search.) Keep this model cur-
rent throughout revisions. If pos-
sible, trace the user’s experience-
based “business rules”
understanding through the applica-
tion. This trace may help in under-

standing the side-effects of Y2K
problems.

• When a Y2K bug occurs, note the
functional area and as much other
information as possible about the
bug. Pinpoint the bug in the reverse
engineered model.

• Using the model’s control and data
flow information, along with the
data usage information, trace the
bug manifestation to the code and
data flows that caused the bug.

• Follow the bug as it propagates
through the code and data to find
all bug implications.

• Repair all problems caused by the
bug. Update the model to reflect the
repairs.

Generic LE Contingency Plans
Limited information about systems in
Category 1 confines generic LE contin-
gency plans to addressing broad possi-
bilities. Generic plans end up being like
physical event plans; however, generic
plan techniques apply equally to systems
in Categories 1 and 2. Generic contin-
gency plan mechanisms include service
degradation, internal recovery, commer-
cial recovery, cooperative recovery, and
combination recovery strategies [7].

Service Degradation Strategies
Service degradation strategies are useful
when IT is partially operational. Service
degradation involves
• Reduction of Service: Some, but

not all, functionality is available [7].
This strategy works when part of
the system experiences problems,
but a work-around bridges the gap.
The work-around might not be
desirable or meet all requirements,
but it allows something like busi-
ness-as-usual pending repairs. For
instance, when a central calendar
management system is inoperable,
anyone planning events is incon-
venienced. Replacing the calendar
system with a temporary text file to
share information may suffice.

• Manual Replacement of IT-Based
Service: IT tasks can sometimes be
performed manually. This occurs
when manual calculations substitute
for automated functions, or paper

records replace on-line data. Knowl-
edge about the manual procedures
often exists, since the IT service
superseded the original manual
procedures [7]. Manual procedures
do not mean abandoning automa-
tion—if a corporate accounting
program on a mainframe is unavail-
able, perhaps a personal computer
spreadsheet could substitute.

• Withdrawal of Service: Functions
without immediate operational
impact (planning, research and
development, etc.) are dispensable
during an LE. The functionality
may be too complex, require too
much precision, or be too time-
consuming for manual execution
[7]. Because the functionality can-
not be acceptably executed without
the unavailable system and the func-
tionality is not immediately critical,
withdrawal of the service is the best
choice.

Reverse
Engineering

Reverse engineering is defined as “the
process of analyzing a subject system to (1)
identify the system’s components and their
interrelationships and (2) create representa-
tions of the system in another form or at a
higher level of abstraction.” [1] (See Figure 1.)

Reverse engineering covers a variety of
techniques; only a few are relevant here.
Beginning with source code, reverse engineer-
ing can, for example, produce control and data
flow information (often represented graphically)
both between and within routines, identify the
ripple effects of changing one piece of source
code with respect to other code, and even
deduce the domain of valid inputs and outputs.

Reverse engineering depends heavily on
automated assistance. Many fine research tools
are free (see http:/ /gulf.uvic.ca/~kenw/
toolsdir/). Building and maintaining a source
code date usage model using a reverse engi-
neering tool can have a significant payoff not
just in diagnosing Y2K problems before critical
dates occur but after supposedly corrected
problems crop up as well.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 27March 1999

Internal Recovery Strategies
Contingency plans frequently use inter-
nal recovery strategies. These strategies
feature a “can do” attitude of “the pres-
sure is on—let’s get the job down now!”
• Work Round-the-Clock: Working

extra hard sometimes gets a job
done quickly and well. However,
experience teaches that work pro-
duced under pressure is often poorly
done. Plans that use this strategy
need to provide details on getting
the best from people in a short time,
maintaining morale under pressure,
and choosing the right people.

• Train and Assign Extra People: Any
project might benefit from extra
hands. Unfortunately, a crisis is not
the time to bring on new people.
There may be exceptions to this if
the people are of high ability, thor-
oughly trained, and familiar with
the work but (through some quirk
of fate) are working elsewhere. This
strategy requires forethought on
getting good people, training them
adequately, and integrating them
into the team.

• Have Employees On Call: Many
industries use an “oncall” strategy to
have employees available during
unforeseen events. Unless a spot
repair solves the problem, though,
calling employees in at midnight
might accomplish no more than
creating a bleary-eyed work force.
Important details for this tactic
include having a checklist of trivial
repairs to attempt before calling
employees in, diagnostics to deter-
mine when a problem is solvable
from on-call resources, and arrange-
ments in case of unreliable
communications.

• Information Preservation: A classic
“disaster” recovery aid is source code
and data backup. System backups
are prudent. Preserving data and
program code frequently, particu-
larly if multiple versions are retained
(in case the most recent backup was
done after an event occurred but
before the event was noticed), en-
sures a baseline exists. Be sure to
verify that the procedure to recover
saved information works before it is

needed. Be aware, too, that back-
ups may be of limited use during a
Y2K LE, because (1) the backup
may be unreadable by the Y2K-
impacted system, and (2) the back-
up itself might include Y2K errors.

Commercial Recovery Strategies
Commercial recovery strategies help
when an organization cannot recover
from an event because of technical,
personnel, or political issues but can
“hire” a solution.
• Contracting Tasks to Others: Hiring

supplemental employees may aid
recovery from an event. Teams can
temporarily expand to produce re-
sults more rapidly. Alternatively,
added employees can free internal
resources to concentrate on recovery.
Either strategy creates difficulties
similar to those in the above “train
and assign extra people” solution.
Important details in using this strat-
egy include determining the types of
available help and having a purchase
order for services pre-approved.

• Commercially Available System
Alternatives: Are there commer-
cially available equivalents to an
internally developed system? De-
pending on the urgency of repairs,
their technical feasibility, how good
a replacement the commercial alter-
native is for the existing component,

and the cost of the repairs vs. the
commercial substitute, buying a
replacement is an efficient recovery
method. It may require great effort
to fit the commercial substitute into
the existing infrastructure; so, seri-
ously consider the impact before
using this tactic.

Cooperative Recovery Strategies
Cooperation between organizations
with similar systems and problems
might facilitate more robust systems
and more rapid post-event recovery.
Banding together also gives cooperating
organizations a louder voice to vendors
who are making fixes and provides
other opinions on how to proceed. A
drawback is that cooperation helps
those who did not work hard to meet
the challenges while providing little
benefit to those who did their home-
work. Cooperation also risks exposing
sensitive information to potential com-
petitors. A contingency plan that ad-
dresses this strategy helps limit the risks
while enhancing the advantages by
establishing nondisclosure agreements,
exploring the strengths of each party,
and determining administrative proce-
dures for cooperation.

Combination Recovery Strategies
Combining the strategies above gives a
more robust overall solution. For in-

Figure 1. Software abstraction levels.

Logical Event Contingency Planning for Y2K

28 CROSSTALK The Journal of Defense Software Engineering March 1999

stance, hiring temporary on-call em-
ployees might be as effective as using
internal employees while avoiding a
morale impact on long-term staff.

Summary
A good contingency plan accounts for
the importance of the IT being pro-
tected, the contingency mechanisms’
costs and benefits, and the ability of
system developers, maintainers, and
managers to implement the plan. Para-
mount in contingency planning is know-
ing a system’s vulnerabilities, determin-
ing real-world threats, understanding the
combination of threats and vulnerabili-
ties, and then choosing appropriate
contingency mechanisms. u

About the Authors
Robert L. Moore is a
senior software engineer
for Coastal Research
and Technology, Inc. in
the National Security
Agency (NSA) Year
2000 Oversight Office.

He is the author of Y2K compliance
criteria widely used in the U.S. intelli-
gence community and a variety of articles
on software reengineering, reverse engi-
neering, and Y2K issues. Prior to Y2K
work, he worked on software reengineer-
ing projects for NSA’s software engineer-
ing center. He is a certified software test
engineer and has a master’s of science
degree in applied mathematics.

718 Meadow Field Court
Mount Airy, MD 21771
Voice: 301-688-9943
Fax: 301-688-9494
E-mail: rlmoore@romulus.ncsc.mil

Roberta H. Krupit is a
senior software engineer
for Coastal Research
and Technology, Inc. in
the National Security
Agency Year 2000
Oversight Office. She

has worked on software reengineering
projects for NSA and the Office of Naval
Intelligence.

References
1. Chikofsky, Elliot J. and James H. Cross

II, “Reverse Engineering and Design
Recovery: A Taxonomy,” IEEE Software,
January 1990, pp. 13-17.

2. Gannod, Gerald C. and Betty H. C.
Cheng, “Using Informal and Formal
Techniques for the Reverse Engineering
of C Programs,” Proceedings of the 1996
International Conference on Software
Maintenance, IEEE Computer Society
Press, Los Alamitos, Calif., 1996, pp.
265-274.

3. Gries, David, The Science of Program-
ming, Springer-Verlag, New York, 1981,
Chaps. 1, 9-12, 16.

4. Mayfield, Terry, J. Eric Roskos, Stephen
R. Welke, and John M. Boone, “Integ-
rity in Automated Information Sys-
tems,” C Technical Report 79-91,
Institute for Defense Analysis, 1991,
Sections 2.1, 2.2, 3.6-3.9, 3.12. (Avail-
able by writing to INFOSEC Aware-

ness, Attn: V/NISC, National Security
Agency, 9800 Savage Road, Ft. George
G. Meade, MD 20755-6753 or at
http://www.radium.ncsc.mil/tpep).

5. Mohan, C., Kent Treiber, and Ron
Obermarck, “Algorithms for Manage-
ment of Remote Backup Data Bases for
Disaster Recovery,” Proceedings of the
9th Annual International Conference on
Data Engineering, IEEE Computer
Society Press, Los Alamitos, Calif.,
1993, pp. 511-518.

6. National Computer Security Center, “A
Guide to Understanding in Audit in
Trusted Systems,” National Computer
Security Center, 1987, Section 5-6
(Available by writing to INFOSEC
Awareness, Attn: V/NISC, National
Security Agency, 9800 Savage Road, Ft.
George G. Meade, MD 20755-6753 or
at http://www.radium.ncsc.mil/tpep).

7. QED Information Services, Inc., Disas-
ter Recovery: Contingency Planning and
Program Evaluation, Chantico, Port
Jefferson, New York, 1985, Chap. 4.

Notes
1. Some systems from Category 2 may be

returned to Category 1 if Y2K examina-
tion reveals that the systems will be
impossible to repair within existing
resource constraints.

2. A useful related technique is process
isolation—separating data records into
two sets: one set for application X and
one set for application Y to limit data-
propagated errors in X from corrupting
Y (and vice versa). Algorithms may be
adapted from [5].

3. Least privilege or role enforcement (re-
stricting processes to just the accesses and
abilities they need for the current
moment’s action) is another related
mechanism. For instance, if the YY part
of DDMMYY increments years since
1900, YY could overflow as the counter
moves from 31 December 1999 to 1
January 2000 (that is, YY = 100). To
restrict any process that tries to write
DDMMYY to a database to no more
than six characters still allows Y2K prob-
lems to occur but prevents an accidental
overwrite of adjacent data items.

4. This is true if inputs from random num-
ber generators are counted as outside
inputs. Consequently, the random num-
ber is a known quantity as an input, even
if it is not known until run time.

The new commercial standard IEEE/
EIA 12207, “Information Technology –
Software Life Cycle Processes,” is
available from the Defense Automated
Printing Service (DAPS) at no charge.
The standard comes in three parts:

• IEEE/EIA 12207.0, “Standard for
Information Technology – Software
Life Cycle Processes.”

• IEEE/EIA 12207.1, Guide for ISO/
IEC 12207, “Standard for Informa-
tion Technology – Software Life
Cycle Processes – Life Cycle
Data.”

IEEE/EIA 12207 Standard for
Software Lifecycle Processing

• IEEE/EIA 12207.2, Guide for
ISO/IEC 12207, “Standard for
Information Technology – Soft-
ware Life Cycle Processes –
Implementation Considerations.”

Other military and federal specifica-
tions also are available from DAPS.

Defense Automated Printing Service
Building 4/D
700 Robbins Avenue
Philadelphia, PA 19111-5094
Help Desk: 215-697-6257/6396 DSN
442-6257/6396
Fax: 215-697-1462
E-mail: roy_bowser@daps.mil
Internet: http://www.dodssp.daps.mil

Software Engineering Technology

